ALGAL HYDROGEN PHOTOPRODUCTION

Maria L. Ghirardi and Michael Seibert

National Renewable Energy Laboratory, Golden, CO

Program Review Meeting Berkeley, CA May 19-22, 2003

Relevance/Objectives

Develop Advanced, Renewable, Photolytic H₂-Generation Technologies Based on Algal Water-Splitting Processes

- Meet the technical challenges associated with the continuity of algal H₂-production under aerobic conditions (Technical Barrier M);
- Contribute to reaching the mid-term target of continuous H_2 photoproduction at a utilization efficiency of 20% and a cost of \$30/kg by 2010 (Table 4.1.6).

Renewable Hydrogen Production/Utilization

Biochemical Pathways (light reactions)

Approaches to Generate an O₂-Tolerant, Algal H₂-Producing System

- 1. Separate O_2 and H_2 -production either temporally or physically;
- 2. Engineer a hydrogenase that functions in the presence of O_2 .

Significant Past Results and Future Milestones FY00-FY10

- (1) 96 hours H₂-production per batch operation cycle;
- (2) 240 hours of continuous H₂-production at sustained rates;
- (3) 480 hours of continuous H₂-production (Milestone) but at decreased end rates;
- (4) 500 hours of continuous H₂-production at sustained rates;
- (5) 1500 hours of continuous H₂-production at sustained rates.

1. Temporal Separation of O₂ and H₂ Production (batch system)

Physical Separation of O₂ and H₂ Production (continuous system)

fermentation products (acetate, formate)

supplements, pharmaceuticals, etc.)

This represents a major break-through!

Effects of Research Progress on Projected H₂ Cost

Continuous photoproduction of pure H₂ at a rate of 1.5 ml H₂ gas/liter culture

- •Current system hydrogen cost: \$200/kg, down from \$760/kg in FY00;
- •Projected hydrogen cost: \$2.34/kg (land-based system), < \$1.40/kg (ocean-based system).

Significant Past Results and Future Milestones FY00-FY10

- (1) Cloned and sequenced the catalytic site of 2 algal hydrogenases;
- (2) Cloned and sequenced 2 algal hydrogenase genes;
- (3) Generated our first mutant with improved O_2 tolerance (0.1% to 1% O_2);
- (4) Generate 3 new mutants tolerant to O_2 ;
- (5) Achieve 10% utilization efficiency in a theoretically integrated organism (with U.C. Berkeley and ORNL);
- (6) Achieve 20% utilization efficiency in a physically integrated organism (with U.C. Berkeley and ORNL).

2. Engineering the Hydrogenase for O₂-Tolerance

Cloning of two algal hydrogenases

Engineering the Hydrogenase for O₂-tolerance

Structural modeling of the two proteins

H₂ channel

H₂ channel

C. reinhardtii HydA1

C. reinhardtii HydA2

Engineering the Hydrogenase for O₂-tolerance

Generation of a H₂-channel mutant

Interactions with Others

- Papers: 7 published or in press; 3 submitted. Patents: 1 issued, 2 submitted.
- A. Melis (UC Berkeley) and J. Lee (ORNL) Team is coordinating efforts to generate a small chlorophyll antenna mutant with non-limited rates of electron transport and an O₂-tolerant hydrogenase.
- A. Rubin (Moscow State University) and A. Tsygankov (Russian Academy of Sciences, Pushchino, Russia) collaborating on physiological and engineering studies of algal H₂ production;
- T. Happe (U. Bochum, Germany) collaborated on the cloning of the algal hydrogenases;
- D. Ahmann (Colorado School of Mines) using gene shuffling techniques to generate O₂-tolerant mutants;
- R. Schulz (Christian Albrechts University, Kiel, Germany) –studying the H₂-photoproduction capability of different green algal species;
- W. Jacoby (University of Missouri) examining photobioreactor engineering questions.

Plans and Future Milestones for FY04

• Separate O₂ and H₂ production:

- maximize cell density in the continuous system to increase the volume of H₂ gas collected (May 2004);
- improve the efficiency of H₂ photoproduction using immobilized algal cultures (July 2004).

Engineer the algal hydrogenases:

- Generate and test double mutants of the gas channel (August 2004)
- Isolate algal hydrogenases for structural studies (September 2004)

Response to Last Year's Panel

• "Little evidence of practicality"; "not likely to be a source of reasonably price hydrogen"; "mentions secret engineering/economic study regarding practical (allegedly) application"; "it is difficult to know if biological hydrogen production will ever be a large scale source of hydrogen"; "see no useful purpose for this project".

Economic analyses done for DOE by the NREL Analysis Team (Nov. 2002) indicate that, currently, the two-stage system is not economical. However, when operated with a small antenna size mutant (U.C. Berkeley), at the maximum theoretical electron transport rates (ORNL), and at optimized productivity (NREL), estimated prices of $\mathbf{H_2}$ are about \$2.34/kg.

• "Results are not encouraging"; "the goal is not within sight and presumably unattainable in green algae"; "the holy grail is beyond reach".

Our results this year serve as definitive proof that it is indeed possible to engineer an O_2 -tolerant hydrogenase by modifying O_2 access to the catalytic site along the gas channel. This is a longer-term approach, and our milestone for the generation of an ideal organism is 2010.